REGPOLYG - Regular Convex Polygon
A regular convex polygon is a polygon where each side has the same length, and all interior angles are equal and less than 180 degrees. A square, for example, is a regular convex polygon. You are given three points which are vertices of a regular convex polygon R; can you determine the minimum number of vertices that R must have?
Input
Each test case consists of three lines. Line i consists of two floating point values xi and yi (−104 ≤ x1, y1 ≤ 104) where (xi, yi) are the coordinates of a vertex of R. The coordinates are given with a precision of 10−6, i.e., they differ from the exact coordinates by at most 10−6. You may assume that for each test case the Euclidean distance between any two given points is at least 1, and R has at most 1000 vertices. The input will finish with a line containing the word END.
Output
For each test case, print one line with the minimum number of vertices that R must have.
Sample Input
-1385.736326 -146.954822 430.000292 -2041.361203 1162.736034 478.316025 0.000000 4147.000000 -4147.000000 0.000000 0.000000 -4147.000000 END
Sample Output
3 4
Problem setter: Adrian Kuegel
Added by: | David García Soriano |
Date: | 2011-11-26 |
Time limit: | 1s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Languages: | All except: ASM64 |
Resource: | Southwestern Europe Regional, SWERC 2011 |