FCTRL - Factorial


The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.

ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N.

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

Input

There is a single positive integer T on the first line of input (equal to about 100000). It stands for the number of numbers to follow. Then there are T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.

Output

For every number N, output a single line containing the single non-negative integer Z(N).

Example

Sample Input:

6
3
60
100
1024
23456
8735373

Sample Output:

0
14
24
253
5861
2183837

hide comments
chillypotato: 2019-07-07 17:32:04

Tip: You can't find factorial the normal way

sanket17: 2019-07-05 09:01:05

Ac in One Go

pratiyush_05: 2019-06-15 16:25:47

Its working in ideone but not here ...help pls

sakshijangalwa: 2019-06-13 20:09:55

I am new to SPOJ ,and i am not able to understand input and output .can anyone please help me out?

tk_000: 2019-06-09 15:19:15

ac in second go

phanindra_28: 2019-06-06 16:53:51

good question.......
AC in one go

muggleborn_: 2019-05-09 16:57:50

AC in one go

shaswat01: 2019-04-30 12:59:08

For those whose output on different ide is correct but here it shows wrong,do this:
paste your code in ideone.com,download that code, upload your solution file.

PS:it worked for me, hopefully it works for you too

rayten: 2019-04-05 20:18:04

Too easy man!

ri3c: 2019-03-30 15:04:09

i'm getting wrong answer here but on ideone it works perfectly !
Can anyone help ?


Added by:adrian
Date:2004-05-09
Time limit:6s
Source limit:50000B
Memory limit:1536MB
Cluster: Cube (Intel G860)
Languages:All except: NODEJS PERL6 VB.NET
Resource:ACM Central European Programming Contest, Prague 2000