Zero Count

Write down N integers $1,2 \ldots \mathrm{~N}$ in binary system on a paper, one per line, ignore all leading 0 s : 1

10
11
100
101
110
111

Now on each line, consider all groups of consecutive 0s, index these group from 1. We will color all zeros in the $1 \mathrm{st},(\mathrm{K}+1)$ th, $(2 K+1)$ th, \ldots group, for K is a given integer.

For example: if a number in binary is: 10100011100110000 , and $\mathrm{K}=2$. We have 4 groups of consecutive 0s, and we will color all zeros in the 1 st and the 3rd group. So we will color $1+2=3$ zeros in this line.

Given N and K . Compute total number of Os we will color in the paper. (The paper is big enough to contain all numbers :D)

Input

Several lines, each line contains 2 integers: N and K separated by a single space. ($1<N<2^{31}, K$ >0)

Output

For each line in the input, print exactly 1 number on a single line which is the result of the corresponding test case.

Example

Input:
41
562

Output:

