Power Calculus Starting with x and repeatedly multiplying by x, we can compute x^{31} with thirty multiplications: $$x^2 = x \cdot x$$, $x^3 = x^2 \cdot x$, $x^4 = x^3 \cdot x$, ... $x^{31} = x^{30} \cdot x$. The operation of squaring can appreciably shorten the sequence of multiplications. The following is a way to compute x^{31} with eight multiplications: $$x^2 = x * x$$, $x^3 = x^2 * x$, $x^6 = x^3 * x^3$, $x^7 = x^6 * x$, $x^{14} = x^7 * x^7$, $x^{15} = x^{14} * x$, $x^{30} = x^{15} * x^{15}$, $x^{31} = x^{30} * x$. This is not the shortest sequence of multiplications to compute x^{31} . There are many ways with only seven multiplications. The following is one of them: $$x^{2} = x * x$$, $x^{4} = x^{2} * x^{2}$, $x^{8} = x^{4} * x^{4}$, $x^{10} = x^{8} * x^{2}$, $x^{20} = x^{10} * x^{10}$. $x^{30} = x^{20} * x^{10}$. $x^{31} = x^{30} * x$. There however is no way to compute x^{31} with fewer multiplications. Thus this is one of the most efficient ways to compute x^{31} only by multiplications. If division is also available, we can find a shorter sequence of operations. It is possible to compute x^{31} with six operations (five multiplications and one division): $$x^2 = x * x$$, $x^4 = x^2 * x^2$, $x^8 = x^4 * x^4$, $x^{16} = x^8 * x^8$, $x^{32} = x^{16} * x^{16}$, $x^{31} = x^{32} \div x$. This is one of the most efficient ways to compute x^{31} if a division is as fast as a multiplication. Your mission is to write a program to find the least number of operations to compute x^n by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence of operations should be x to a positive integer's power. In other words, x^{-3} , for example, should never appear. ### Input The input is a sequence of one or more lines each containing a single integer *n*. *n* is positive and less than or equal to 1000. The end of the input is indicated by a zero. ### Output Your program should print the least total number of multiplications and divisions required to compute x^n starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces. ## **Example** # Output: 0 6 8 9 11 9 13