
Word Counting 2

“I have hated words and I have loved them, and I hope I have made
them right.” ― Markus Zusak

We also love words, don’t we? However, we are code poets, so, we
love words in a different way. How about counting them? Yes, counting
word seems to be a good thing and has a huge application in computer
science. Well, counting may sometimes sound boring, but many hidden
knowledge can be achieved from counting. For example, finding the
most frequent word in vast collection of documents, which then in turns,
can be used to classify those documents.

But fear not! We are not interested in large documents right now. In
fact, in our extremely busy world, offline data processing algorithms are
getting obsolete day by day. Instead of words in large files, we are now
more interested in streams of words.

The idea is quite simple, your program will keep reading from a stream
where new words are continuously being fed to your program, but due
to limited storage, your program can only remember the latest K words.
So, when (K+1)th word arrives, your program forgets the 1st word, when
(k+2)th word arrives, your program forgets the 2nd word, and so on.

We want you to find the most frequent word over the latest K words
each time a new word arrives.

Input Format

The first line of input will contain an integer T, which denotes the
number of test cases. First line of each test case will contain two
integers N and K, where N is the total number of words to be read, and
K is the number of words that your program can remember. Each of the
following N lines will contain a single word composed with only
lowercase characters ‘a’ to ‘z’, at most 8 characters long.

Output Format

For each case, first print the case number, then for each of the words,

For each case, first print the case number, then for each of the words,
print the most frequent word that appears within the last K words along
with the frequency. If there are less than K words, then print the most
frequent word among all of them. In case there is a tie, print the
alphabetically smaller word. See sample input and output sections for
more details.

Constraints
1 ≤ T ≤ 20

1 ≤ K ≤ N ≤ 105

1 ≤ word-length ≤ 8

Sample Input
1
8 3
hello
hi
who
hi
hi
hello
who
when

Sample Output
Case 1:
hello 1
hello 1
hello 1
hi 2
hi 2
hi 2
hello 1
hello 1

Explanation

The following table shows a simulation of the program for the entry of
each new word. Note, once the capacity of the program is full, i.e.
equals to K, the program will start forgetting the oldest entry for each

new entry. In other words, those words will not be taken into
consideration anymore.

New word in stream Words remembered by the program Most frequent word (Count)

1 hello hello hello (1)

2 hi hello, hi hello (1)

3 who hello, hi, who hello (1)

4 hi hi, who, hi hi (2)

5 hi who, hi, hi hi (2)

6 hello hi, hi, hello hi (2)

7 who hi, hello, who hello (1)

8 when hello, who, when hello (1)

	Word Counting 2
	Input Format
	Output Format
	Constraints
	Sample Input
	Sample Output
	Explanation

