Votka and String

Votka loves string very much. Recently he learned prefixes and suffixes. A prefix of a string S is any leading contagious part of S and a suffix of string S is any trailing contagious part of S, e.g., the prefixes of string "abc" are { "a", "ab", "abc" } and the suffixes are { "abc", "bc", "c" } . Votka considers a suffix S_i of string S beautiful, if S_i has at least b prefixes which are also prefixes of S. Formally,

let, P = the set of prefixes of the string S

 P_i = the set of prefixes of the suffix S_i

Then, S_i is a beautiful suffix if $|P \cap P_i| \ge b.$

For example, consider S = "abcabcd" and b = 3, then suffix S₃ i.e. "abcd" is a beautiful suffix because it has $3 (\geq b)$ prefixes { "a", "ab", "abc" } which are also prefixes of S. Note that, S itself is a beautiful suffix for all b $\leq |S|$.

Now Votka thinks about a problem. The problem is, you are given a string S and m numbers $\{K_1, K_2, ..., K_m\}$. For each number K_i , you have to find the number of beautiful suffixes of S considering $b = K_i$. Votka announces that he will give a treat to the first solver of this problem. Luffy, a close friend of Votka,

wants to have that treat. As Luffy is very dumb, he asks for your help. Can you help him? :)

Input

Input starts with an integer T (\leq 10), denoting the number of test cases. The first line of each case contains a string S (1 \leq |S| \leq 100000). S contains only lowercase English letters. The next line contains an integer m (1 \leq m \leq 100000). The following line contains m space separated integers K₁, K₂, ..., K_m (0 \leq K_i \leq 100000).

Output

For each test case, print m space separated integers (number of beautiful suffixes of S considering $b = K_i$) in a single line. (Caution: Dataset is large. Use faster I/O.)

Sample

Output:

210 54321