Votka and String

Votka loves string very much. Recently he learned prefixes and suffixes. A prefix of a string S is any leading contagious part of S and a suffix of string S is any trailing contagious part of S, e.g., the prefixes of string "abc" are \{ "a", "ab", "abc" \} and the suffixes are \{ "abc", "bc", "c" \} . Votka considers a suffix S_{i} of string S beautiful, if S_{i} has at least b prefixes which are also prefixes of S. Formally,
let, $P=$ the set of prefixes of the string S
$P_{i}=$ the set of prefixes of the suffix S_{i} Then, S_{i} is a beautiful suffix if $\left|P \cap P_{i}\right| \geq b$.
For example, consider $S=$ "abcabcd" and $b=3$, then suffix S_{3} i.e. "abcd" is a beautiful suffix because it has $3(\geq b)$ prefixes $\{$ "a", "ab", "abc" \} which are also prefixes of S. Note that, S itself is a beautiful suffix for all b $\leq|S|$.
Now Votka thinks about a problem. The problem is, you are given a string S and m numbers $\left\{K_{1}, K_{2}, \ldots\right.$, $\left.K_{m}\right\}$. For each number K_{i}, you have to find the number of beautiful suffixes of S considering $b=K_{i}$. Votka announces that he will give a treat to the first solver of this problem. Luffy, a close friend of Votka, wants to have that treat. As Luffy is very dumb, he asks for your help. Can you help him? :)

Input

Input starts with an integer $\mathbf{T}(\mathbf{1 0})$, denoting the number of test cases. The first line of each case contains a string $S(1 \leq|S| \leq 100000)$. S contains only lowercase English letters. The next line contains an integer m ($1 \leq m \leq 100000$). The following line contains m space separated integers $K_{1}, K_{2}, \ldots, K_{m}\left(0 \leq K_{i} \leq 100000\right)$.

Output

For each test case, print m space separated integers (number of beautiful suffixes of S considering $b=K_{i}$) in a single line. (Caution: Dataset is large. Use faster I/O.)

Sample

Input:

2
abcabcd
3
378
aaaaa
5
12345

Output:

210
54321

