Pencil Game

Minh has a box of pencils. The box is a rectangle of size $\mathrm{M} x \mathrm{~N}$, where position (i, j) has a pencil with a length of exactly i $\times \mathrm{N}+\mathrm{j}(0<=\mathrm{i}<=\mathrm{M}-1,0<=\mathrm{j}<=\mathrm{N}-1)$. Note that position $(0,0)$ does not have any pencil hence having a length of 0 .

He wonders if he could select a sub-rectangle of the box and join all the pencils within that subrectangle together, to get a new long pencil that has a specific length L that he wants.

Your task is to find a sub-rectangle of the box in which the total length of the contained pencils is L and return the area of that the sub-rectangle. If there are multiple solutions, return the smallest possible area. If there's no such sub-rectangle, return -1.

Input

The input file consists of several datasets. The first line of the input file contains the number of datasets which is a positive integer and is not greater than 150. The following lines describe the datasets.

Each dataset contains three space-separated numbers M, N and $L\left(1<=M, N<=10^{\wedge} 6,1<=L<=\right.$ 10^12) written in one line.

Output

For each dataset, write in one line the smallest possible area of the sub-rectangle in which the total sum of pencil lengths is L. Write in one line -1 if there is no such sub-rectangle.

Example

Input:

2
238
227
Output:
4
-1

