Video game combos

Bessie is playing a video game! In the game, the three letters ' A ', ' B ', and ' C ' are the only valid buttons. Bessie may press the buttons in any order she likes. However, there are only N distinct combos possible ($1<=\mathrm{N}<=20$). Combo i is represented as a string S _i which has a length between 1 and 15 and contains only the letters ' A ', ' B ', and ' C '.

Whenever Bessie presses a combination of letters that matches with a combo, she gets one point for the combo. Combos may overlap with each other or even finish at the same time! For example if $\mathrm{N}=3$ and the three possible combos are "ABA", "CB", and "ABACB", and Bessie presses "ABACB", she will end with 3 points. Bessie may score points for a single combo more than once.

Bessie of course wants to earn points as quickly as possible. If she presses exactly K buttons (1 $<=\mathrm{K}<=1,000$), what is the maximum number of points she can earn?

Input description

* Line 1: Two space-separated integers: N and K .
* Lines $2 . . N+1$: Line $\mathrm{i}+1$ contains only the string S_i, representing combo i.

Output description

* Line 1: A single integer, the maximum number of points Bessie can obtain.

Example

Input:

37
ABA
CB
ABACB
Output:
4

Example details

The optimal sequence of buttons in this case is $A B A C B C B$, which gives 4 points: 1 for ABA, 1 from $A B A C B$, and 2 from CB.

