Very Friends 2

You are creating a new soical network for dogs. Wow. The dogs don't have many possibilities for interacting with your website, but they can bark how many friends they want. E.g. if a dog wants to have much 8 friends it will bark 8 times, and if it doesn't want any friends, it'll just stay quiet.

After spending a good year of your life collecting these barks, you are finally ready to assign a friend list for each dog. The only problem is: You are not sure whether it is actually possible. Thus before you proceed you would like to write a program, that given a list of \mathbf{N} wishes $\mathbf{w}_{\mathbf{i}}$, outputs HAPPY if it is possible to make a friend list for each dog \mathbf{i} of length $\mathbf{w}_{\mathbf{i}}$, or SAD if some dog will have to get more or fewer friends than it wished for.

Notice: Being friends is considered a reflexive relation.

Input

The first line will contain a single integer \mathbf{T} - the number of test cases to process.
Because of I/O constraints, the sequence of wishes is not given explicitly. Each of the \mathbf{T} lines will consist of 5 integers $\mathbf{N}, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{m}$ in the range $[\mathbf{0}, \mathbf{1 0 \wedge} \mathbf{7}]$ (except \mathbf{m} which is in $[\mathbf{1 , 1 0 \wedge 7]) . ~ T h e s e ~}$ integers describe the sequence
$\mathrm{x}_{0}=0$
$x_{i+1}=\left(a^{*} x_{i}+b\right) \% m$
The sequence of wishes is $\mathbf{w}_{\mathbf{i}}=\mathbf{x}_{\boldsymbol{i}}+\mathbf{c}$.

Output

Write the answer - HAPPY or SAD - for each test case on a separate line.

Example

Input:

3
32102
51105
61113
Output:
HAPPY
SAD
HAPPY

Explanation

In the first case we get the wishes "011", and we can make dog 2 and 3 be friends.
In the second case we get the wishes "0 1234 ". No assignment that works, since dog 5 would have to be friends with everyone, but dog 1 doesn't want that.

In the third case we get the wishes "123123".

