Matrices with XOR property

Imagine A is a NxM matrix with two basic properties

1) Each element in the matrix is distinct and lies in the range of $1<=A[i][j]<=\left(N^{*} M\right)$
2) For any two cells of the matrix, ($\mathrm{i} 1, \mathrm{j} 1$) and ($\mathrm{i} 2, \mathrm{j} 2$), if $(\mathrm{i} 1 \wedge \mathrm{j} 1)>\left(\mathrm{i} 2^{\wedge} \mathrm{j} 2\right)$ then $A[i 1][j 1]>A[i 2][j 2]$, where
$1 \leq \mathrm{i} 1, \mathrm{i} 2 \leq \mathrm{N}$
$1 \leq j 1, j 2 \leq M$.
${ }^{\wedge}$ is Bitwise XOR

Given N and M , you have to calculatethe total number of matrices of size $\mathrm{N} \times \mathrm{M}$ which have both the properties mentioned above.

Input format:
First line contains T, the number of test cases. $2^{*} T$ lines follow with N on the first line and M on the second, representing the number of rows and columns respectively.

Output format:

Output the total number of such matrices of size $\mathrm{N} \times \mathrm{M}$. Since, this answer can be large, output it modulo $10^{\wedge} 9+7$

Constraints:

$1 \leq \mathrm{N}, \mathrm{M}, \mathrm{T} \leq 1000$

SAMPLE INPUT

1

2

2

SAMPLE OUTPUT

4

Explanation

The four possible matrices are:
[1 3] | [2 3] | [14] |[2 4]
[4 2] | [4 1] | [3 2] |[3 1]

