Update Sub-Matrix \& Query Sub-Matrix

Updating and querying 1 dimensional arrays is a popular question. How about updating and quering sub-matrices of a matrix?

A sub-matrix will be depicted as (a, b), (c, d). This implies that it will include all the cells (x, y) such that $\mathrm{a}<=\mathrm{x}<=\mathrm{c}$ and $\mathrm{b}<=\mathrm{y}<=\mathrm{d}$.

The matrix is indexed from [1..N][1..N], where N is the size.

You are given a matrix of size NxN , with each element initially set to 0 . There are M queries and each query can be of one of the two types:
$1 \times 1 \mathrm{y} 1 \times 2 \mathrm{y} 2$: This query asks you to return the sum of all the elements in the sub-matrix ($\mathrm{x} 1, \mathrm{y} 1$), (x2, y2).

2 x 1 y 1 x 2 y 2 K : This query asks you to add K to each element in the sub-matrix ($\mathrm{x} 1, \mathrm{y} 1$), ($\mathrm{x} 2, \mathrm{y} 2$).

Input

The first line of input contains N, M.
The next M lines contain queries in the same forms as stated above.
You may assume that $\mathrm{x} 1<=\mathrm{x} 2$ and $\mathrm{y} 1<=\mathrm{y} 2$ for all queries.
Also $\mathrm{N}<=1000$ and $\mathrm{M}<=10^{5} . \mathrm{K}<=10^{9}$

Output

The answer to all the queries wherein you need to return the sum of elements in the sub-matrix, i.e., all the queries of type 1 .

Sample Test Case

Input:

55
222444
11133
255553
11112
12253
Output:
16
0
24
Note: Please be careful with certain languages as the output may exceed the range of the data type used to store it.

Please use 64-bit integers to store the results. For example, long long in $\mathrm{C} / \mathrm{C}_{++}$.

