Foxling Feeding Frenzy

You've come across \$N\$ (\$1 Veq N Veq 200\$) adorable little Foxlings, and they're hungry! Luckily, you happen to have \$M\$ (\$1 Veq M Veq 200\$) crackers on hand, and everyone knows that Foxen love crackers! You'd like to distribute all of your crackers, without splitting any of them, among the Foxlings - but you have to be careful. Foxling \$i\$ must be fed at least \$A_i\$ crackers, or it will remain hungry, but no more than \$B_i\$ of them, or it will become hyper (\$1 Veq A_i Veq B_i Veq 200\$). You certainly don't want any hungry or hyper Foxlings on your hands, and you're curious as to how many ways this can be accomplished.

There are $\$ 7 \$(\$ 1$ leq T Veq 100\$) scenarios as described above. For each one, you'd like to determine the number of different distributions of your crackers that would satisfy all of the Foxlings, modulo $\$ 10^{\wedge} 9+7 \$$ (as this value can be quite large).

Input

First line: 1 integer, \$T\$
For each scenario:
First line: 2 integers, $\$ \mathrm{~N}$ \$ and $\$ \mathrm{M}$ \$
Next \$N\$ lines: 2 integers, \$A_i\$ and \$B_i\$, for \$i=1..N\$

Output

For each scenario:
Line 1: 1 integer, the number of valid cracker distributions modulo $\$ 10^{\wedge} 9+7 \$$

Example

Input:
2
25
14
26
35
22
29
23
Output:
3
0
Explanation of Sample:
In the first scenario, you can give either 1, 2, or 3 crackers to the first Foxling, and the remaining

4 , 3 , or 2 (respectively) to the second.
In the second scenario, each Foxling must receive at least 2 crackers, while you only have 5 to aivo nut an vnu havo nn valid antinne.
Loading [Contrib]/a11y/accessibility-menu.js

