Untitled Problem II

You are given a sequence of N integers $A_{1}, A_{2} . . A_{N} \cdot\left(-10000<=A_{i}<=10000, N<=50000\right)$
Let S_{i} denote the sum of $A_{1} . . A_{i}$. You need to apply $M(M<=50000)$ operations:

- $0 x y \mathrm{k}$: increase all integers from A_{x} to A_{y} by $k(1<=x<=y<=N,-10000<=k<=10000)$.
- $1 \times \mathrm{y}$: ask for $\max \left\{\mathrm{S}_{\mathrm{i}} \mid \mathrm{x}<=\mathrm{i}<=\mathrm{y}\right\}$. $(1<=\mathrm{x}<=\mathrm{y}<=\mathrm{N})$

Input

- In the first line there is an integer N .
- The following line contains N integers that represent the sequence.
- The third line contains an integer M denotes the number of operations.
- In the next M lines, each line contains an operation " 0 x yk" or "1 xy ".

Output

For each "1 x y" operation, print one integer representing its result.

Example

Input:

5
238 -9622 5181 202-6943
5
134
0554846
135
0 3-7471
133
Output:
-4001
-4001
-11674

Use signed 64-bit integer :)

