Binomial Coefficients

We all got too excited when we learned $(A+B)^{\wedge} 2=A^{\wedge} 2+2 A B+B^{\wedge} 2$. After solving this problem, maybe you could get even more excited because you will have to calculate $(A+B)^{\wedge} N$, where (0 <= N <= 1000).

Follow the rules below when giving the answer:

1. Consecutive terms must be separated by a ' + ' character.
2. At the i-th term, A must be raised to $N-i$ and B must be raised to $i(0<=i<=N)$.
3. Binomial coefficients must not be printed, print their prime factorization instead.
4. Use '^' for exponentiation and 'x' for multiplication in step 3.
5. Avoid the use of number 1 when possible.

See sample output for clarification.

Input

Input starts with an integer T, representing the number of test cases ($1<=\mathrm{T}<=15$). T lines follow, each one consisting of an integer $\mathrm{N},(0<=\mathrm{N}<=1000)$.

Output

For each test case, print $(A+B)^{\wedge} N$, on a single line.

Example

Input:

6
0
1
2
3
4
5

Output:

1
A+B
$A^{\wedge} 2+2 x A B+B^{\wedge} 2$
$A^{\wedge} 3+3 \times A^{\wedge} 2 B+3 \times A^{\wedge} 2+B^{\wedge} 3$
$A^{\wedge} 4+2^{\wedge} 2 \times A^{\wedge} 3 B+2 \times 3 \times A^{\wedge} 2 B^{\wedge} 2+2^{\wedge} 2 \times A^{\wedge} B^{\wedge}+B^{\wedge} 4$
$A^{\wedge} 5+5 \times A^{\wedge} 4 B+2 \times 5 \times A^{\wedge} 3 B^{\wedge} 2+2 \times 5 \times A^{\wedge} 2 B^{\wedge} 3+5 \times A B^{\wedge} 4+B^{\wedge} 5$
Warning: Large output. Be careful with certain languages.

