Sequence

We say that an integer sequence $a_{1}, a_{2}, \ldots, a_{n}$ is k-even if the sum of any k consecutive terms of the sequence is even.

For a given sequence we would like to find out how many of its terms need to be changed so that the sequence becomes k-even.

Input

The first line of input contains two integers n and $k\left(1 \leq k \leq n \leq 10^{6}\right)$. The second line contains a sequence composed of n integers $a_{1}, a_{2}, \ldots, a_{n}$. For each of the a_{i} 's it holds that $0 \leq a_{i} \leq 10^{9}$.

Output

The only line of output should hold one integer: the minimum number of terms of the sequence that need to be changed so that it becomes k-even.

Example

Input:

83
12345678

Output:

3
Input:
83
24242424

Output:

0

