Sum

Once upon a time, there existed a sequence A consisting of N positive integers. You don't know the
sequence itself, but you do know the sum of every two elements of the sequence. Find the sequence A !

Input

The first line of input contains the positive integer $N(2 \leq N \leq 1000)$. Each of the following N lines contains N positive integers smaller than or equal to 100000 , forming the table S . The following relations
hold: $S(i, j)=A[i]+A[j]$ for $i \neq j$, and $S(i, j)=0$ for $i=j$. Here $S(i, j)$ denotes the number in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of the table, and $A[i]$ denotes the $i^{\text {th }}$ element of the sequence A. It is guaranteed
that for any input data set there exists a unique sequence of positive integers A with the given properties.

Output

The first and only line of output must contain the required sequence A (in the form of N space separated
positive integers).

Example

Input:
2
02
20

Output:

11
Input:
4

