Entangled Circles

The description of this problem is extremely simple. You are given 2 non-intersecting circles in 3-dimensional world. Each of the circle is defined by 3 non - collinear points lying on the circle. All you have to return is whether the circles are entangled or not (just like two links of a chain). Two circles are entangled if they cannot be separated from each other without breaking any of the circles.

Input Format:

The first line contains a single integer, \mathbf{T}, the number of test cases. Each of the \mathbf{T} test cases are defined by $\mathbf{2}$ lines. The first line of each test case contains $\mathbf{9}$ integers representing the $\mathbf{3}$ points as ($\mathbf{x} 1, \mathbf{y} \mathbf{1}, \mathbf{z 1}$), ($\mathbf{x} \mathbf{2}, \mathbf{y} \mathbf{2}, \mathbf{z 2}$), ($\mathbf{x} \mathbf{3}, \mathbf{y} \mathbf{3}, \mathbf{z 3}$) which define the first circle. Similarly, the second line for each test case contains 9 integers representing the 3 points which define the second circle.

Output Format:

For every query output "YES" without quotes if the circles are entangled and "NO" otherwise (quotes for clarity).

Constraints:

$1 \leq \mathrm{T} \leq 100$
$-10000 \leq$ Each Coordinate in the Input ≤ 10000

Sample Input:

1

$0101000-10$
$00010-1101$

Sample Output:

YES

Problem Setter: Lalit Kundu

