Tower of Hanoi Movement - Easy

The harder version of this problem can be found here
The Tower of Hanoi (also called the Tower of Brahma or Lucas' Tower and sometimes pluralized) is a mathematical game or puzzle. It consists of three rods and a number of disks of different sizes, which can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape.

The objective of the puzzle is to move the entire stack to another rod, obeying the following simple rules:

1. Only one disk can be moved at a time.
2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack.
3. No disk may be placed on top of a smaller disk.

With 3 disks, the puzzle can be solved in 7 moves. The minimal number of moves required to solve a Tower of Hanoi puzzle is $2^{\mathrm{N}}-1$, where n is the number of disks.

The description is retrieved from Wikipedia

From the description above, AVM wants to know the $a^{\text {th }}$ step of optimal solution. The set of Tower of Hanoi consists of N disks and 3 rods (A as the source rod, B as the spare rod, and C as the target rod).

Input

The input file consists of several lines. The first line contains a single number T representing the number of test cases. The next T lines contains N and a representing the number of disk and the $a^{\text {th }}$ move.

Output

The output file should contains T lines. The i-th line should contain $P: A=>C$, the $P^{\text {th }}$ disk, the rod of $P^{\text {th }}$ disk before the movement, and the rod of $P^{\text {th }}$ disk after the movement.

Constraint

$1<=T<=100$
$1<=N<=20$
$1<=a<=2^{N}-1$

Example

Input:

Output:

$1: B=>C$
1: $B \Rightarrow A$
$1: A \Rightarrow C$

Explanation

The 2-disks Tower of Hanoi optimal solution is:
1: $A=>B$
2: $A \Rightarrow C$
1: $B=>C$
Therefore, the first test case answer is
$1: B=>C$
The 3-disks Tower of Hanoi optimal solution is:
1: $A=C$
2: $A=>B$
1: $C=>B$
3: $A \Rightarrow C$
1: $B=>A$
2: $B \Rightarrow C$
$1: A=C$
Therefore, the second test case answer is
$1: B=>A$
and the last test case answer is
$1: A=>$

