The Maximize Sum

You are given a set S of n elements. Do you know how many subsets the set has? It is 2ⁿ where n is the number of elements in S.

For example, consider a set S of 3 elements. $S = \{1, 2, 3\}$ so S has 2^3=8 subsets. They are $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{2,3\}$, $\{1,3\}$, $\{1,2,3\}$, $\{\}$. Here $\{\}$ is empty set.

In the above example number of subsets of S having at most 2 elements excluding empty set are $\{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}.$

Find subsets which have at most 2 elements excluding empty set in which each element of S must belong to a single a subset i.e. if we take subset for example {1} then we can't take other subsets containing element 1. Now sum the product of the subsets containing 2 elements with the value of subsets containing single element. Your target will be maximizing this sum.

For example consider a set $S = \{1, 2, 3, 4, 5, 6\}$. So the subsets of S having at most 2 elements excluding empty set are $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$, $\{6\}$, $\{1,2\}$, $\{1,3\}$, $\{1,4\}$, $\{1,5\}$, $\{1,6\}$, $\{2,3\}$, $\{2,4\}$, $\{2,5\}$, $\{2,6\}$, $\{3,4\}$, $\{3,5\}$, $\{3,6\}$, $\{4,5\}$, $\{4,6\}$, $\{5,6\}$.

Now we can take subsets of $\{5,6\}$, $\{4,3\}$ and $\{1,2\}$ which contains all 6 elements of S then total sum will be = $(5^{*}6)+(4^{*}3)+(1^{*}2) = 44$. On the other hand if we take subsets of $\{5, 6\}$, $\{4, 3\}$ and $\{1\}$ & $\{2\}$ then total sum will be = $(5^{*}6) + (4^{*}3) + 1 + 2 = 45$ which is greater than the previous one.

Input

The first line of the input will be an integer T to represent the number of test cases. For each case there will be two lines. The first line contains integer n — the number of distinct elements in the given set S. The second line contains n integers s_i (i=1,2,...,n) — the elements of the S.

Output

In a single line, output the maximum sum.

Constraints

- 1 <= T <= 100
- 1 <= n <= 100
- -10000 <= s_i <= 10000

Example

Input:

- 6

Output: 7