Totient in permutation (medium)

In number theory, Euler's totient (or PHI function), is an arithmetic function that counts the number of positive integers less than or equal to a positive integer N that are relatively prime to this number N .

That is, if N is a positive integer, then $\mathrm{PHI}(\mathrm{N})$ is the number of integers K for which $\mathrm{GCD}(\mathrm{N}, \mathrm{K})=1$ and $1 \leq K \leq N$. We denote GCD the Greatest Common Divisor. For example, we have PHI(9)=6.

Interestingly, $\mathrm{PHI}(87109)=79180$, and it can be seen that 87109 is a permutation of 79180 .

Input

The input begins with the number T of test cases in a single line.
In each of the next T lines there are an integer M .

Output

For each given M, you have to print on a single line the value of N, for which $1<N<M, P H I(N)$ is a permutation of N and the ratio $\mathrm{N} / \mathrm{PHI}(\mathrm{N})$ produces a minimum. If there's several answers output the greatest, or if need, "No solution." without quotes.
Leading zeros are not allowed for integers greater than 0 .

Example

Input:

3
22
222
2222
Output:
21
63
291
Explanations : For the first case, in the range]1..22[, the lonely number n for witch phi(n) is in permutations(n) is 21 , (we have phi $(21)=12$). So the answer is obviously 21.
For the second case, in the range]1..222[, there's two numbers n for witch phi(n) is in permutations(n), we have $\operatorname{phi}(21)=12$ and $\operatorname{phi}(63)=36$. But as $63 / 36$ is equal to $21 / 12$, we're taking the greater : 63 .
For the third case, in the range]1..2222[, there's four numbers n for witch phi(n) is in permutations(n), phi(21)=12, phi(63)=36, phi(291)=192 and phi(502)=250. Within those solutions 291/192 is the minimum, we output 291.

Constraints

$1<\mathrm{T}<10^{\wedge} 2$
$1<M<10^{\wedge} 12$

Code size limit is 10 kB ; the upper bound was set at $10^{\wedge} 12$ to make a (C/pascal/...)-solution
easier to write. Constraints allow Python3 users to get AC under 1.86 s (with a sub-optimal solution). (Edit 2017-02-11, after compiler updates)
If if you get TLE, you should try first TIP1.
If it's too easy for you TIP3 is made for you ;-)

