Swarm of Polygons

There is a regular n-gon. Some points are marked on each of its sides. There are x_{1} point marked on the first side, x_{2} - on the second, \ldots, x_{n} - on the n th. The marked points do not coincide with the vertices of the n-gon. You can choose no more than one of the marked points from each side and form a convex non-degenerate polygon by connecting all those points with lines. Now your task is to find the number of different k-gons that can be formed that way.

Input

The first line of input file contains positive integer t - the amount of test cases. Next tlines contain six integers each: n, k, a, b, c, m. Here n is the number of sides of the initial $n-g o n$. The amount of marked points on the first side of this n-gon is $x_{1}=a$, the amount of the marked points on the following sides is $x_{i}=\left(b^{*} x_{i-1}+c\right)$ mod m, for $i>1$.

Constraints

$1<=\mathrm{t}<=30$
$3<=\mathrm{n}<=10^{9}$
$3<=\mathrm{k}<=20$
$1<=\mathrm{b}, \mathrm{c}, \mathrm{m}<=10^{6}$
$0<=\mathrm{a}<\mathrm{m}$

Output

For each test case output the number of k-gons that can be formed modulo 1000000007.

Example

Input:

2
43122191
1051113157999991

Output:

1228
328836201

