Difference One Swaps

You are given an array of size $\$ \mathrm{~N} \$$ containing the integers $\$ 1,2$, ll dots, $\mathrm{N} \$$ in some order.
A move consists of swapping the integers $\$ \mathrm{k} \$$ and $\$ \mathrm{k}+1$ \$ for some $\$ 1 \mathrm{Ve} \mathrm{kVt} \mathrm{N} \$$. In other words, you may swap any pair of integers that has a difference of one.

Find the minimum number of moves required to sort the given array in ascending order.

Input

The first line contains $\$ T \$(\$ 1 \vee e ~ T V e 1000 \$)$, the number of test cases.
Each test case contains $\$ \mathrm{~N} \$\left(\$ 2 \mathrm{Ve} \mathrm{N}\right.$ Ve $10^{\wedge} 5 \$$) followed by $\$ \mathrm{~N} \$$ distinct integers (\$1 Ve x_i Ve N\$).

The sum of $\$ \mathrm{~N} \$$ over all test cases will not exceed $\$ 10^{\wedge} 5 \$$.

Output

For each test case, output the number of moves required to sort the array.

Example

Input:
5
212
221
3321
44231
6214365

Output:

Note

Below is one optimal sequence of moves that sorts $[4,2,3,1]$.

- Swap 1 and $2:[4,2,3,1] \rightarrow[4,1,3,2]$.
- Swap 2 and $3:[4,1,3,2] \rightarrow[4,1,2,3]$.
- Swap 3 and $4:[4,1,2,3] \rightarrow[3,1,2,4]$.
- Swap 2 and $3:[3,1,2,4] \rightarrow[2,1,3,4]$.
- Swap 1 and $2:[2,1,3,4] \rightarrow[1,2,3,4]$.

