SUMMING

Find the sum of x smallest distinct numbers of the series $2^{i} \times 3^{j}(i, j \geq 0)$.

- the first number of the series is $1=2^{0} \times 3^{0}$
- the second number of the series is $2=2^{1} \times 3^{0}$
- the third number of the series is $3=2^{0} \times 3^{1}$
- the fourth number of the series is $4=2^{2} \times 3^{0}$
- the fifth number of the series is $6=2^{1} \times 3^{1}$

As the sum can be huge print sum modulo k.

Input

The input contains 2 numbers x and $k: 1 \leq x \leq 10^{14}, 1 \leq k \leq 10^{8}$

Output

The output contains sum of the first x numbers of the series modulo k.

Example

Input:
11000
Output:
1

Input:
21000
Output:
3

Explanation: $3=2^{\wedge} 0 \backslash$ times $3^{\wedge} 0+2^{\wedge} 1$ \times $3^{\wedge} 0 \backslash p m o d\{1000\}$.
Input:
41000
Output:
10
Input:
62
Output:
0

Input:
161000
Output:
Processing math: 93%

