## Special Graph

You are given a directed graph with $\mathbf{N}$ vertices. The special thing about the graph is that each vertex has at most one outgoing edge. Your task is to answer the following two types of queries

1 a delete the only edge outgoing from vertex a . It is guaranteed that the edge exists. $1<=\mathrm{a}<=\mathrm{N}$

2 ab output the length of the shortest path from vertex $a$ to vertex $b$, if the path exists. Otherwise output " -1 " without quotes. $1<=a, b<=N$

Input

First line of input contains a natural number $N<=10^{\wedge} 5$ the number of vertices in the graph.
The following line contains $N$ integer numbers, $i$-th number is next $[i](0<=\operatorname{next}[i]<=N)$, meaning that there
is an edge from vertex $i$ to vertex next[i]. If next[i] $=0$, assume that there is no outgoing edge from vertex
i.

Third line contains a natural number $\mathrm{M}<=10^{\wedge} 5$ the number of queries.
The following M lines contain a query each. Queries are given in the manner described above.

## Output

On the i-th line output the answer for the i-th query of type 2 ab .
Example

Input:

334564
6
216
214
212
13
216
214
Output:
4
2
-1
-1
-1

