Gopu and Combinatorics on Graphs

Little Gopu was playing with graphs. He encoutered following problem while playing.
Given a graph G with n vertices and m edges. Let us say it has k connected components. Find out how many numbers of ways you can add $\mathrm{k}-1$ edges to make the graph connected. Note that the new edge you are going to add should not be a repeated edge ie. if you are going to connect u, v then there should not be an edge between u, v already in the graph. Output the answer modulo $10^{\wedge} 9+7$.

If the graph is already connected, Output -1
Help Gopu with this task.

Input

First line contains T : number of test cases. ($1<=\mathrm{T}<=20$)
For each test case, First line contains two space seperated integers n, m : $\left(1<=n, m<=10^{\wedge} 5\right)$.
Then For each of the next m lines, each line contains two space seperated integers u and v denoting that u and v are connected to each other. ($1<=u, v<=n$ and $u!=v$)

Output

For each test case, output the answer as required.

Example

Input:

4
42
12
34
53
12
34
45
33
12
23
31
75
12
34
45
35
67
Output:
4
6
-1

