Divisible by 6 and 9

Let num (>0) be $\mathrm{n}(>0)$ digit(s) positive integer. num is represented as $N_{1} N_{2} N_{3} N_{4} \ldots . N_{n-2} N_{n-1} N_{n}$, where N_{i} is the $i^{\text {th }}$ digit of num from left $(0<\mathrm{i}<\mathrm{n}+1)$. Digits of num are sorted in descending and ascending order respectively and this sorting generates two new positive integers num dsc and numasc . The difference between the numbers is diff ${ }_{n u m}=$ num $_{\text {dsc }}-$ num $_{\text {asc }}$, if diff ${ }_{\text {num }}$ is divisible by both 6 and 9 , then we say that num is a magic number. Let sum digits is defined as following

```
number \(=\) diff \(_{\text {num }}\)
do \{
    number = sum of digits of number
\} while (number > 10)
```

sum $_{\text {digits }}=$ number

Input

First line of input is $t(<101)$, total number of test cases. Each test case has $n(<10001)$ as its first input and next n lines contains num (<10100).

Output

For each test case, write exactly n lines containing two/three specifications without space :
(i) Y if num is magic number otherwise N .
(ii) Let sum $_{\text {digits }}=c$, ZER if c is 0 (zero), ONE if c is 1 (one) if $c>1$, EP if c is even and prime, ENP if c is even but not prime, OP if c is odd and prime or ONP if c is odd but not prime.
(iii) Let diff ${ }_{\text {num }}=d$, If num is not a magic number then print EQL if d is not divisible by both 6 and 9, LTN if d is not divisible by 6 only, GTN if d is not divisible by 9 only.

Example

Input:

1

2
31
100

Output:

YONP
NONPLTN
0 is divisible by 6 and 9 :)

