Divisible by 6 and 9

Let num (> 0) be n (> 0) digit(s) positive integer. num is represented as $N_1N_2N_3N_4....N_{n-2}N_{n-1}N_n$, where N_i is the ith digit of num from left (0 < i < n+1). Digits of num are sorted in descending and ascending order respectively and this sorting generates two new positive integers num_{dsc} and num_{asc}. The difference between the numbers is diff_{num} = num_{dsc} - num_{asc}, if diff_{num} is divisible by both 6 and 9, then we say that num is a magic number. Let sum_{digits} is defined as following

number = diff_{num}
do {
 number = sum of digits of number
} while (number > 10)

sum_{digits} = number

Input

First line of input is t (< 101), total number of test cases. Each test case has n (< 10001) as its first input and next n lines contains num (< 10^{100}).

Output

For each test case, write exactly n lines containing two/three specifications without space :

(i) Y if num is magic number otherwise N.

(ii) Let $sum_{digits} = c$, ZER if c is 0 (zero), ONE if c is 1 (one) if c > 1, EP if c is even and prime, ENP if c is even but not prime, OP if c is odd and prime or ONP if c is odd but not prime.

(iii) Let $diff_{num} = d$, If num is not a magic number then print **EQL** if d is not divisible by both 6 and 9, **LTN** if d is not divisible by 6 only, **GTN** if d is not divisible by 9 only.

Example

Input:

Output: YONP NONPLTN

0 is divisible by 6 and 9 :)