Count Primes

Let num(num $>=0$) is a positive integer or zero. We can represent num in the following two forms if it is possible to do so -

1. num $=n^{2}+2$ * n, for non-negative integer n
2. num $=m^{2}-2$ * m, for non-negative integer m

Suppose there is num that can be represented in both the forms. Consider this type of number as a magic number. Consider the following 5 cases -

1. n is the only prime.
2. m is the only prime.
3. n and m both are primes.
4. n is prime.
5. m is prime.

Input

First line of input is t, total number of test cases. For each test case the first line is q, total number of queries. Then there will be (2 * q) lines. First line contains c (referring to case mentioned in the problem description) and second line contains two integers a and b defining the range $[a, b]$ for magic number.
t < 1001
q < 5001
$0<c<6$
minimum_value_of_a $=0$
maximum_value_of_b $=10^{6}$

Output

For every test case, that has q queries, the output has $(q+1)$ lines. First line will be simply printing the test case number and then q lines will be printing total number of magic numbers in the given range $[a, b]$ under the specific case mentioned in input.

Example

Input:

2

Output:
Test Case :\#1:
Query :\#1: 1
Query :\#2: 1
Query :\#3: 1
Test Case :\#2:
Query :\#1: 1
Query :\#2: 1

