
Slink
Slitherlink is a puzzle published by Nikoli, the Japanese company that popularized Sudoku.
Slitherlink puzzles are gaining momentum, and books of Slitherlink puzzles have started
showing up around the world. The puzzles are simple to understand, but can be challenging to
solve. The puzzle is simply a rectangular grid of dots that forms a collection of cells, every cell
being either blank or containing an integer from zero to three. The challenge is to connect the
dots with line segments to form a cycle (a connected path such that every vertex has precisely
two incident edges), in such a way that every cell with a value has exactly the number of incident
edges as the digit it contains. Cells with no value may have any number of incident edges. A
valid Slitherlink puzzle always contains sufficient non-empty cells to guarantee a unique solution.
Below is an example from the Nikoli web site of a Slitherlink puzzle and its solution.

It was shown by Takayuki Yato at the University of Tokyo that the general Slitherlink problem is
NP-complete. (If you are not familiar with this concept, informally it means there is no "efficient"
algorithm to solve the problem.) With a slight modification and some simple heuristics, however,
programmatic solutions are possible. Our new puzzle, which we will term Slink, differs from
Slitherlink only in that the puzzle may not have empty cells. That is, every cell must specify the
number of incident edges. Below is the Slitherlink puzzle above converted to Slink (the added
numbers are shown in gray). Note that the solution does not change, only the information given in
the puzzle itself.

The heuristics for solving Slink arise from the nature of the puzzle itself. For example, consider a
cell containing a zero. There must be no incident edges, therefore all edges incident to all zeros
can be immediately removed from consideration as part of the solution path. Consider a three
next to a zero. Because all the edges incident to the zero will be eliminated, the common edge
shared with the three is also eliminated. But that leaves only three edges around the three, and
therefore those three edges must be part of the solution path. The following table specifies the
heuristic rules that must be properly applied to solve a Slink puzzle. The "x" characters between
vertices mark edges that are not part of the solution path, while line segments between vertices
mark edges that form part of the solution. Grey elements are the pattern the rule is based on,
black elements indicate the additional edges that should be included or excluded if the rule is
matched. Note that the pictured examples are for demonstration purposes only and do not
illustrate every possible arrangement of the stated rule!

Examples Rule Specification

The easiest and most obvious of all the rules. Cells containing a zero
have no incident edges, so all the edges around a zero should be
removed from consideration as part of the solution path.

If a cell contains the value n and only n incident edges remain (i.e.
have not been eliminated), then the n remaining edges must be part
of the solution path. Two examples of this occurring are shown here.

If a cell contains the value n and n incident edges have already been
included in the path, the remaining edges can be eliminated. Two
examples of this occurring are shown here.

If two 3's are adjacent to one another, the common edge between the
cells as well as the outer edges of both cells are part of the solution
path. One example of this arrangement occurring is shown here.

If two 3's occur diagonally adjacent, the opposing corners as shown
here must be part of the solution path. One example of such an
arrangement is shown here.

If an edge enters a vertex for which only a single exit remains, that
exit must be part of the solution path. One such example is shown
here.

If a vertex has two incident edges, the other edges can be eliminated
from consideration as part of the solution path. One such example is
shown here.

If any vertex has three incident edges excluded, the fourth incident
edge can be excluded as well. One possible arrangement of this
occurring is shown here.

A 3 for which two of the exits are blocked as shown, such as in a
corner of the puzzle, must include the two edges incident to the
blocked vertex.

If the exits at one corner of a 2 are blocked, and one exit at an
adjacent vertex around the 2 is also blocked, then the unblocked exit
at that adjacent vertex must be part of the solution path. One example
of this arrangement is shown here.

A 1 for which the exit paths at one of its incident vertices are both
blocked as shown, such as might occur in the corner of the puzzle,
must also eliminate the other two edges incident to that vertex as
shown.

If the solution path enters the corner of a 3, and the exit that goes
away from the 3 at that same corner is blocked, then the two edges
around the three incident to the opposite corner must be part of the
solution path.

If a 3 and 1 are diagonally adjacent, and the corner of the 3 furthest
from the 1 has the exit segments blocked as shown, then the edges
incident to the far corner of the 1 becomes blocked. The opposite is
also true; if the far corner of the 1 had been blocked, then the exit
segments at the far corner of the 3 would become blocked in the
same manner.

If the solution path enters the corner of 2 and the path leading away
from the 2 at the same corner is blocked, then if one of the paths
leading away from the 2 at the diagonally opposite corner is also
blocked, the other edge leading away from the 2 at that same corner
must be part of the solution path. One example of this arrangement
occurring is shown here.

If the solution path enters the corner of a 1, and the exit that goes
away from the 1 at that same corner is blocked, then the two edges
around the three incident to the opposite corner must be eliminated
from the solution path.

Input

The input for this problem is a set of Slink puzzles to be solved. The first line of a Slink problem's
input contains two integers, r and c, separated by a space, the number of rows and the number of
columns in the puzzle. The next r rows of the input contain c integers, space delimited, valued
from 0 to 3, which specify the content of the puzzle. The minimum dimension of a puzzle is 2 by 2
cells, and the maximum dimension is 20 by 20 cells. It is guaranteed that a unique solution to
every input puzzle exists and can be determined with the above rules if a rule is always applied
when it can be applied. A line with values of zero for r and c marks the end of the input.

Output

The output for this problem is a graphical representation of the Slink puzzle solution. The first
data set is 1, the second data set is 2, etc. On a line by itself display the data set number,
followed by the solution in exactly the format demonstrated below. Vertical edges are output as
the vertical bar '|' character, horizontal edges are output as dash '-' characters, vertices where the
path changes direction are output as plus signs '+', and cell numbers are always displayed with a
blank to the left and to the right. Further, surround the entire output with a border made up of hash
marks '#' such that the number in the upper left cell of the puzzle always occurs four positions to
the right of the border and three position below the border, and the number in the lower right cell
always occurs four positions to the left of the border and three positions above the border.

Example

Input:

8 8
1 0 1 1 2 2 1 3
3 3 3 3 2 3 3 2
2 2 0 1 1 2 2 0
2 3 1 1 0 1 2 2
2 1 2 3 1 1 0 2
1 2 2 2 2 3 2 1
3 2 1 3 1 1 3 2

1 0 0 2 3 2 3 2
6 6
0 0 1 1 0 0
0 2 2 2 2 0
1 2 0 0 2 1
1 2 0 0 2 1
0 2 2 2 2 0
0 0 1 1 0 0
2 2
2 2
2 2
3 5
3 3 3 2 3
1 2 1 3 2
3 3 2 2 2
0 0

Output:

1
#####################################
#
+---------------+
1 0 1 1 | 2 2 1 3 |
+---+ +---+ | +---+ +---+
| 3 | 3 | 3 | 3 | 2 | 3 | 3 | 2
| +---+ +---+ | +---+
| 2 2 0 1 1 | 2 2 0
+-------+ +-------+
2 3 | 1 1 0 1 2 | 2
+-------+ +---+ +---+
| 2 1 2 | 3 | 1 1 0 2 |
| +---+ | +---+ |
| 1 2 | 2 2 | 2 | 3 | 2 1 |
| +---+ +---+ | +---+ |
| 3 | 2 1 | 3 1 | 1 3 | 2 |
+---+ +---+ | +---+ |
1 0 0 2 | 3 | 2 | 3 2 |
+---+ +-------+
#
#####################################
2
#############################
#
#
0 0 1 1 0 0
+-------+
0 2 | 2 2 | 2 0
+---+ +---+
1 | 2 0 0 2 | 1
| |
1 | 2 0 0 2 | 1
+---+ +---+
0 2 | 2 2 | 2 0
+-------+
0 0 1 1 0 0
#
#
#############################

3
#############
#
+-------+
| 2 2 |
| |
| 2 2 |
+-------+
#
#############
4
#########################
#
+---+ +---+ +---+
| 3 | 3 | 3 | 2 | 3 |
| +---+ | | |
| 1 2 1 | 3 | 2 |
| +---+ +---+ |
| 3 | 3 | 2 2 2 |
+---+ +-----------+
#
#########################

	Slink
	Input
	Output
	Example

