Segment Flip

You are given N number $\mathrm{a}_{1}, \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{N}}$. In a segment flip, you can pick a contiguous segment a_{i}, $a_{i+1} \ldots a_{j}$ of these numbers, where $i<=j$ and negate all the numbers in this segment.

You are permitted at most K segment flip operations overall. Also, no 2 segments that you pick can overlap. That is, if you flip $\mathrm{a}_{\mathrm{i}} \ldots \mathrm{a}_{\mathrm{j}}$ and $\mathrm{a}_{\mathrm{k}} \ldots \mathrm{a}_{\text {}}$ then either $\mathrm{j}<\mathrm{k}$ or l < i .

Your aim is to maximize the sum of all the numbers in the resulting sequence by applying appropriate segment flip operations meeting these constraints.

For instance, suppose the sequence is $-5,2,-3$ and you are allowed a single segment flip. The best sum you can achieve is 6 , by flipping all 3 numbers as a single segment to $5,-2,3$.

Input

The first line contains 2 integers N and K . The next line contains N integers, the initial values of $a_{1}, a_{2} \ldots a_{N}$.

Output

A single integer denoting the maximum possible sum of the final array.

Constraints

$0<=\mathrm{K}<=\mathrm{N}$
$-10000<=\mathrm{a}_{\mathrm{i}}<=10000$
$1<=N<=100000$

Example

Input:
31
-5 2-3

Output:

6

