Segment Flip

You are given N number $a_1, a_2 \dots a_N$. In a *segment flip*, you can pick a contiguous segment a_i , $a_{i+1} \dots a_i$ of these numbers, where i<=j and negate all the numbers in this segment.

You are permitted at most K segment flip operations overall. Also, no 2 segments that you pick can overlap. That is, if you flip $a_i \dots a_j$ and $a_k \dots a_l$ then either j < k or l < i.

Your aim is to maximize the sum of all the numbers in the resulting sequence by applying appropriate segment flip operations meeting these constraints.

For instance, suppose the sequence is -5, 2, -3 and you are allowed a single segment flip. The best sum you can achieve is 6, by flipping all 3 numbers as a single segment to 5, -2, 3.

Input

The first line contains 2 integers N and K. The next line contains N integers, the initial values of $a_1, a_2 \dots a_N$.

Output

A single integer denoting the maximum possible sum of the final array.

Constraints

0 <= K <= N -10000 <= a_i <= 10000 1 <= N <= 100000

Example

Input: 3 1 -5 2 -3

Output:

6