Set Cover In the set cover problem there is a collection $C = \{S_1, ..., S_m\}$ of subsets of the universe $[n] = \{0, ..., n-1\}$, and one must find a minimum-sized subcollection of C that still covers [n] (it may be the case that S_i and S_j contain the exact same elements for some $i \neq j$). A **path of length r** is a graph on r+1 vertices $v_0, ..., v_r$ where v_i has an undirected edge to v_{i+1} for i=0, ..., r-1 (these are the only edges). A set cover instance I is said to be **path-realizable** if there exists a mapping from I to a path of length m where the S_i are mapped to edges in the path and each i in [n] is mapped to a pair of (not-necessarily distinct) vertices s_i , t_i on the path such that the edges lying between s_i and t_i correspond exactly to the sets of C that contain i. Two sets S_i , S_j must be mapped to different edges on the path if $i \neq j$. You will be given a set cover instance that is guaranteed to be path-realizable and should output the size of a minimum-sized subcollection of C still covering [n]. #### Input The first line of the input is "NM" ($1 \le N$, $M \le 300$), where N is the size of the universe and M is the number of sets S_i in the collection of subsets of $\{0, ..., N-1\}$. What follows are M groups of lines. The ith group starts with one line containing $|S_i|$, the size of the ith subset. If $|S_i| = 0$, the current group of lines ends. Otherwise the next line is a space-separated list of the elements contained in S_i . ### Output If [n] cannot be covered by a subcollection of C then you should output -1, followed by a newline. Otherwise, your output should consist of two lines. The first line is the size of a minimum-sized set cover. The second line is a space-separated list of the 0-based indices of the sets in an optimal set cover. ## **Example** #### Input: 3 4 0 2 2 1 ا ک 10 Output: 2 1 2