Servers

Suppose we want to replicate a file over a collection of n servers, labeled $S_{1}, S_{2}, \ldots, S_{n}$. To place a copy of the file at server S_{i} results in a placement cost of c_{i}, for an integer $c_{i}>0$. Now, if a user requests the file from server S_{i}, and no copy of the file is present at S_{i}, then the servers S_{i+1}, S_{i+} ${ }_{2}, S_{i+3 \ldots}$ are searched in order until a copy of the file is finally found, say at server S_{j}, where $j>i$. This results in an access cost of $j-i$. (Note that the lower-indexed servers S_{i-1}, S_{i-2}, \ldots are not consulted in this search.) The access cost is 0 if S_{i} holds a copy of the file. We will require that a copy of the file be placed at server S_{n}, so that all such searches will terminate, at the latest, at S_{n}. We'd like to place copies of the files at the servers so as to minimize the sum of placement and access costs. Formally, we say that a configuration is a choice, for each server S_{j} with $i=1$, $2, \ldots, n-1$, of whether to place a copy of the file at S_{i} or not. (Recall that a copy is always placed at S_{n}.) The total cost of a configuration is the sum of all placement costs for servers with a copy of the file, plus the sum of all access costs associated with all n servers.
Write a program which reads from the standard input the placement costs and writes a single number, the minimum cost of a configuration. First line of the input consists of the number n of servers ($1 \leq n \leq 1000$). In the next n lines you are given the placement costs, in line $i+1$ you are given the placement cost c_{i} of server S_{i}.

Example

For the input:
4
1
1
1
9
the answer is:
12
and for the input:
4
4
3
2
1
the answer is:
6

