Servers

Suppose we want to replicate a file over a collection of n servers, labeled S_1 , S_2 , ..., S_n . To place a copy of the file at server S_i results in a placement cost of c_i , for an integer $c_i > 0$. Now, if a user requests the file from server S_i , and no copy of the file is present at S_i , then the servers S_{i+1} , S_{i+2} , S_{i+3} ... are searched in order until a copy of the file is finally found, say at server S_j , where j > i. This results in an access cost of j-i. (Note that the lower-indexed servers S_{i-1} , S_{i-2} , ... are not consulted in this search.) The access cost is 0 if S_i holds a copy of the file. We will require that a copy of the file be placed at server S_n , so that all such searches will terminate, at the latest, at S_n . We'd like to place copies of the files at the servers so as to minimize the sum of placement and access costs. Formally, we say that a configuration is a choice, for each server S_i with i = 1, 2, ..., n-1, of whether to place a copy of the file at S_i or not. (Recall that a copy is always placed at S_n .) The total cost of a configuration is the sum of all placement costs for servers with a copy of the file, plus the sum of all access costs associated with all n servers.

Write a program which reads from the standard input the placement costs and writes a single number, the minimum cost of a configuration. First line of the input consists of the number *n* of servers ($1 \le n \le 1000$). In the next *n* lines you are given the placement costs, in line *i* + 1 you are given the placement cost *c_i* of server *S_j*.

Example

```
For the input:
4
1
1
1
9
the answer is:
12
and for the input:
4
4
3
2
1
the answer is:
6
```