Coverage

A cellular provider has installed n towers to support their network. Each tower provides coverage in a 1 km radius, and no two towers are closer than 1 km to each other. The coverage region of this network is therefore the set of all points that are no more than 1 km away from at least one tower. The provider wants as much of this region as possible to be connected, in the sense that a user at any point within a connected subregion can travel to any other point within the connected subregion without having to exit the subregion. Their current installation of towers may or may not already form a single connected region, but they have the resources to build one more tower wherever they want, including within 1 km of an existing tower. Given that the provider is able to build one more tower, what is the maximum number of towers (including the new one) that can be included within a single connected subregion of coverage?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The first line of input consists of a single integer $n(1 \leq n \leq 5,000)$ denoting the number of existing towers. Next follow n lines, each with 2 space separated floating-point numbers x and $y(0 \leq x, y \leq 100,000)$, denoting the location of a tower in km. It will be guaranteed that the optimal number of towers will not change even if the coverage radius of all the towers is increased or decreased by $10^{-6} \mathrm{~km}$.

Output

Ouput a single integer, denoting the maximum number of towers that can be within a single connected subregion of the network after installing one additional tower.

Example

Input:

3.13 .1
4.23 .1

Output:
6

