Valid Path

Roger was having fun solving his problems until he found this one. As you know, an undirected connected graph with \mathbf{N} nodes and $\mathbf{N} \mathbf{- 1}$ edges is called a tree. You are given an integer ' \mathbf{K} ' and a tree consisting of ' \mathbf{N} ' nodes. Each node 'i' has a value $\mathbf{a}(\mathbf{i})$ associated with it.

We call a path ' \mathbf{P} ' of tree valid if following conditions are satisfied:

- \mathbf{P} has at least 2 nodes associated with it.
- Max $\mathbf{a}(\mathbf{u})$ - Min $\mathbf{a}(\mathbf{u})>=\mathbf{K}$ (u belongs to the nodes present in the choosen P).

Your task is to count the number of Valid Paths.

Input

The first line contains two space-separated integers \mathbf{N} and \mathbf{K}.
The second line contains \mathbf{N} space-separated positive integers $\mathbf{a}(1), \mathbf{a}(2), \ldots, a(n)$.
Then the next $\mathbf{n - 1}$ line each contains a pair of integers \mathbf{u} and \mathbf{v} denoting that there is an edge between u and v.

Output

Print the number of Valid Paths.

Example

SAMPLE INPUT

31
123
12
23
SAMPLE OUTPUT
3

CONSTRAINTS

$1<=\mathrm{N}<=5000$
$1<=u, v<=N$
$0<=\mathrm{K}<=10^{\wedge} 9$
$0<=\mathrm{ai}<=10^{\wedge} 9$

Like Trees? Try the problems: RTREE, RTREE3 as well

