Ranges

There are N contiguous cells numbered from 1 to N . Initially, each cell contains a 0 in it. A subcontiguous group of cells can be updated this way:

1) A range $[i, j]$ is defined such that $i<j$
2) The cell numbered i is added 1 ; the cell numbered $i+1$ is added 2 , and so on until the cell numbered j is reached and added $j-i+1$

For example, if $N=7$ and the updates $[3,6]$ and $[4,7]$ were performed, this is what would happen. Initially: \{0,0,0,0,0,0,0\}

Update [3,6]: $\{0,0,1,2,3,4,0\}$
Update [4,7]: $\{0,0,1,3,5,7,4\}$

After performing some update operations, it would be amazing to answer questions like the following:

1) A range $[u, v]$ is defined such that $u<v$
2) The answer is the sum of every cell in the range [u, v] (both u and v are included) modulus 10,000

Given N and U updates ranges. You have to write a program capable of answering Q questions.

Input

The first line contains three integers: $N(1<=N<=1,000,000,000), U$ and $Q(1<=U, Q<=1,000)$, representing the number of cells, the number of update operations, and the number of questions respectively.

Each of the following U lines contains two integers i and $j(1<=i<j<=N)$ separated by a single space indicating an update operation.

Each of the following Q lines contains two integers u and $v(1<=u<v<=N)$ separated by a single space indicating a question.

Output

For each question $[u, v]$ you must print the sum of all contiguous cells starting at u and ending at v
modulus 10,000.

Example

Input:
722
36
47
46
17
Output:
15
20

