Robot

There is a robot on the 2D plane. Robot initially standing on the position (0,0). Robot can make a 4 different moves:

1. Up (from (x, y) to $(x, y+1))$ with probability \mathbf{U}.
2. Right (from (x, y) to $(x+1, y))$ with probability \mathbf{R}.
3. Down (from (x, y) to $(x, y-1))$ with probability \mathbf{D}.
4. Left (from (x, y) to $(x-1, y))$ with probability L.

After moving \mathbf{N} times Robot gets points.

- Let x_{1} be the smallest coordinate in X-axis, that Robot reached in some moment.
- Let x_{2} be the largest coordinate in X-axis, that Robot reached in some moment.
- Let y_{1} be the smallest coordinate in Y-axis, that Robot reached in some moment.
- Let y_{2} be the largest coordinate in Y -axis, that Robot reached in some moment.

Points achieved by Robot equals to $x_{2}-x_{1}+y_{2}-y_{1}$.
Given N, U, R, D, L. Calculate expected value of points that Robot achieved after \mathbf{N} moves.

Input

First line: One interger $\mathbf{N}(\mathbf{1} \leq \mathbf{N} \leq \mathbf{2 0 0})$.
Second line: Four real numbers $\mathbf{U}, \mathbf{R}, \mathbf{D}, \mathbf{L}(\mathbf{U}+\mathbf{R}+\mathbf{D}+\mathbf{L}=\mathbf{1 , 0 \leq U}, \mathbf{R}, \mathbf{D}, \mathbf{L} \leq \mathbf{1})$ with maximum of 6 numbers after dot.

Output

One number: expected value of points achieved by Robot. The answer will be considered correct if its relative or absolute error does not exceed 10^{-6}.

Example 1

Input:

2
0.1000000 .2000000 .3000000 .400000

Output:

1.780000

Example 2

```
Input:
3
0.25 0.25 0.25 0.25
Output:
2.375000
```

