Random Number Generator

LoadingTime got a RNG (Random Number Generator) from his classmate several weeks ago. And he spent a lot of time study it. He found that RNG can generate a real number in range $[-\mathbf{S}, \mathbf{S}]$ by executing following steps. First RNG generates n integer $\mathbf{X}_{1} . . \mathbf{X}_{n}$, the sum of which is equal to \mathbf{S}. Then for each \mathbf{X}_{i}, it generates a real number in range $\left[-\mathbf{X}_{\mathrm{i}}, \mathbf{X}_{\mathrm{i}}\right]$ randomly. The output (a real number) of RNG will be the sum of the \mathbf{N} generated real numbers. LoadingTime noticed that the distribution of the output was very interesting, and he wanted to know: for given \mathbf{N} and \mathbf{X}, what's the probability that the generated number is in range $[\mathbf{A}, \mathbf{B}]$. Could you help him?

Input

The first line contains an integer T representing the number of test cases.
For each test case, the first line contains three integers $\mathbf{N}, \mathbf{A}, \mathbf{B}(1 \leq \mathbf{N} \leq 10,-100 \leq \mathbf{A} \leq \mathbf{B} \leq 100)$ In the second line of the test case, you are given $\mathbf{X}_{1} \ldots \mathbf{X}_{n}\left(1 \leq \mathbf{X}_{i} \leq 10\right)$.

Output

For each test case, print a line contains a real number representing the probablity as the problem required. It must be printed with exactly nine decimal places.

Example

Input:

5
1-100 100
10
11090
10
1-20 5
10
2-20 5
55
5-5 10
12345

Output:

1.000000000
0.000000000
0.750000000
0.875000000
0.864720052

