Recursive Functions

nikki enjoys recursive functions.
This time she enjoys the sorting function. Let 'a' is a permutation of an integers from 1 to n, inclusive, and a_{i} denotes the i-th element of the permutation. nikki's recursive function $f(x)$, that sorts the first x permutation's elements, works as follows:
$==>$ If $x=1$, exit the function.
$==>$ Otherwise, call $f(x-1)$, and then make $\operatorname{swap}\left(a_{x}-1, a_{x}\right)$ (swap the x-th and ($x-1$)-th elements of a).
nikki's teacher believes that this function does not work correctly. But that-be do not get an F, the nikki wants to show the performance of its function. Help her, find a permutation of numbers from 1 to n, such that after performing the nikki's function (that is call $f(n)$), the permutation will be sorted in ascending order.

INPUT

The first line of input contains an integer $\mathrm{T}(\mathrm{T}<=1000)$, the number of test cases in the input. T lines follow, one for each test case, each containing a integer $n(1<=n<=1000)$ - the size of permutation.

OUTPUT

For each test case in a single line print n distinct integers from 1 to n - the required permutation. Numbers in a line should be separated by spaces.
It is guaranteed that the answer exists.

SAMPLE

Input

2
1
2
Output
1
21

