TAREA SENCILLA

Given a positive integer n, find another integer p and non-negative integer o such that $n=O 2^{P}$.
Example: For $\mathrm{n}=24, \mathrm{o}=3$ and $\mathrm{p}=3$.
Write a program that for each data set:

- Read a positive integer n,
- calculates the whole non-negative integer o and p such that $n=O 2^{P}$,
- writes the result.

Input

The first line of input contains a positive integer d , indicating the number of data sets, $1 \leq \mathrm{d} \leq 10$
The following lines are data sets. Each data set consists of exactly one line that contains exactly one integer $\mathrm{n}, 1 \leq \mathrm{n} \leq 10^{6}$.

Output

The output consists of exactly d lines, one line for each data set.
Line $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{d}$, corresponding to the i -th entry and must contain two integers o and p separated by a single space so that $n=O 2^{P}$

Example

Input:
2
24
32

Output:
33
15

