Road Network

In a country of N cities, the government would like to develop a new system that can answer drivers' queries to find the shortest path between 2 cities in the country road network. However, some cities are more exciting than others, and drivers would prefer driving through them. Last month, a voting for the most exciting cities in the country was conducted, and a ranking of the P most exciting cities has been made. The government decided to utilize this ranking so that drivers can find the shortest path between 2 cities that only goes through the first K cities of the ranking as intermediate cites on the road. Hence, the query is defined as: the source city, the destination city, and K for the first K cities from the ranking. (Note that some cities may not be exciting at all, and so they will not be included in the ranking, i.e. $\mathrm{P}<=\mathrm{N}$)

Given undirected graph representing the country cities, and ranked list of exciting cities, you are to answer Q quires, each one asking for the shortest path between 2 cities utilizing only the first K cities from the ranked list.

For example, given the graph in the sample (4 cities and ranked list [2 1])
1- Query $(\mathrm{k}=0, \mathrm{Src}=3$, dest=4): means no cities to use as intermediate, hence only direct path allowed à 3-4 with cost 10

2- Query $(\mathrm{k}=1, \mathrm{Src}=3$, dest=4): means we can use first city on list (2), hence we can choose between paths (3-4, 3-2-4) à path 3-2-4 with cost 8 is best

3- Query ($k=2, \operatorname{Sr}=3$, dest=4): means we can use first 2 cities on list (1,2), hence we can choose between paths (3-4, 3-2-4, 3-2-1-4) à path 3-2-1-4 with cost 6 is best

Input Specification:

The first line of input contains an integer T that represents the number of test cases, then follow T test cases, each in following format:

Line 1

$N(1 \leq N \leq 150)$, the number of cities of the country

N-1 lines follow, where ith line represents ith- city connections' costs, Ci,j is the cost of edge (i, j), if there is no edge between i, j then $\mathrm{Ci}, j=-1$ else, $1 \leq C i, j \leq 10000$

$$
\begin{array}{lll}
\mathrm{C} 1,2 & \mathrm{C} 1,3 & \ldots \mathrm{C} 1, \mathrm{~N} \\
\mathrm{C} 2,3 & \mathrm{C} 2,4 & \ldots \mathrm{C} 2, \mathrm{~N}
\end{array}
$$

CN-1, N

Line $\mathbf{N + 1}$

$P(0 \leq P \leq N)$, represents the size of ranked list

Line N+2

P space-separated list of distinct cities ids (1<= city id $<=\mathrm{N}$)

Line N+3

$Q(1 \leq Q \leq 6000)$, represents the number of queries

Q lines follow

K source destination

Note that: $0 \leq \mathrm{K} \leq \mathrm{P}, 1 \leq$ source $\leq \mathrm{N}$ and $1 \leq$ destination $\leq \mathrm{N}$

Output Specification:

For each test case, output a single line of output in the form "Case K: A1 A2 ...Aq" where K is the number of the test case and [A1 A2 ... Aq] are the answers for the Q quires. Each answer is the shortest path cost between the 2 given cities using the first only K cities of given list as intermediate cities. In case no path between 2 cities, the answer is -1

Sample input:

1
4
2-13

17
10

21
3
034
134
234

Sample Output:

Case 1: 1086

