Range Sum

Problem Statement

You are initially given an array of N integers ($1 \le N \le 10^5$). Given this array, you have to perform 2 kinds of operations :

```
(i) Operation 1 : Op1(I, r)
```

You are given 2 integers I and r. ($1 \le l \le r \le current size of the array$). You need to return the sum of all the elements with indices between I and r (both inclusive). That is, if the elements currently in the array are $a_1, a_2, a_3..., a_n$, you need to return the following sum : $a_l + a_{l+1} + a_{l+2} + a_r$.

```
(ii) Operation 2 : Op2( x )
```

You are given a single integer x ($|x| \le 10^9$). Add this element to the <u>beginning</u> of the array. After this operation, x will now become a_1 , the old a_1 will now become a_2 , and so on. The size of the array will increase by 1.

Input

The first line contains a single integer N ($1 \le N \le 10^5$), the number of elements initially in the array.

This is followed by a line containing N space separated integers, $a_1 a_2 \dots a_N$. ($|a_i| \le 10^9$)

The next line contains a single integer Q, the number of operations you will be asked to perform. (1 <= Q <= 10^5)

Q lines of input follow. Each such line starts with either the number 1 or the number 2. This indicates the type of operation that you are required to perform. The format of these queries are as follows :

1 I r : Carry out operation 1 with arguments I and r. ($1 \le l \le r \le current$ size of the array) That is, return the sum of the following array elements : $a_l + a_{l+1} \dots + a_r$

2 x : Carry out operation 2 with the argument x. ($|x| \le 10^9$) That is, add the value x at the beginning of the array.

Output

For each query of type 1, output the return value on a new line. No output needs to be printed for queries of type 2.

Example

Input #1:

Output #1:

55 1 10 27

Input #2:

5						
6	7	8	9	10		
9						
2	5					
2	4					
1	2	7				
2	3					
2	2					
2	1					
1	1	1(0			
1	1	1				
1	1(0	10			

Output #2:

- 45 55 1
- 10