Random modulo \mathbf{n}

Kubík went to buy a pizza. To his surprise, the pizza box was made out of recycled... punch cards!

With his eagle eye, he deciphered the program the punch cards described:

```
n = read_input();
ans = 0;
while(n>0)
{
    ans = ans + 1;
    n = random() % n;
}
```

random() is a function which returns uniformly random non-negative integers, and \% is the modulus operator.

Now he wonders what the expected value of ans would be for a given initial value of n, and he is unable to enjoy his pizza until someone computes the answer for him.

Input

The first line contains an integer $\mathbf{1} \leq \mathbf{T} \leq 5$ - the number of test cases.
Each of the next \mathbf{T} lines contain a single integer \boldsymbol{n}, where $\mathbf{1} \leq \boldsymbol{n} \leq \mathbf{3 0 0} \mathbf{0 0 0}$. The sum of \mathbf{n} within an input file won't exceed 300000.

Output

Output the expected value of the variable ans - that is, the sum of $\boldsymbol{v} \times$ (probability that ans will end up with value \boldsymbol{v}), for all possible values \boldsymbol{v}.

Your answer will be considered correct if the absolute or relative error does not exceed $10^{\mathbf{- 9}}$. Make sure to print enough decimal places.

Example

Input:

2
2
47

Output:

1.5
4.4379638417

In the first case, either random() $\% 2=0$ with probability $1 / 2$, which leads to ans $=1$, or random() $\% 2=1$ with probability $1 / 2$, after which we certainly get random() $\% 1=0$, so ans $=2$.

Expected value of ans is therefore $1 \times 1 / 2+2 \times 1 / 2=1.5$.

