Query Problem

McFn interested in string problem recently. He found a interesting function and he felt he could use this function to invent a new match algorithm.

For a string $S[1 \ldots n]$ and $i j \hat{E}[1, n]$, define $F(i)$ is the length of the longest common suffix of S and S [1 ... i].
For example, for the string $S[1 \ldots 11]=$ zaaxbaacbaa, then $F(1)=0, F(2)=1, F(3)=2$ (note that $S[1 \ldots 3]=$ zaa $), F(4)=0, \ldots \ldots F(10)=1, F(11)=11$;
For the string $S[1 \ldots n], i ; E \hat{E}[1, n], S[i \ldots n]$ is its suffix;

Input

The first line is a integer T.the number of test cases
for each test case
The first line is a string S, composed of only lowercase letters, len (s) is the length of $s, 1<=$ len (s) <= 1000000;

Next line, a number $N(1<=N<=100000)$, denote that the number of queries;
The next N lines, each line contains a number x ($1<=\mathrm{x}<=$ len (s$)$).

Output

For each x the output $F(x)$;

Example

Input:

1
zaaxbaacbaa
11
1
2
3
4
5
6

7

8

9
10
11

Output:

