## Query on a tree VI

You are given a tree (an acyclic undirected connected graph) with $\mathbf{n}$ nodes. The tree nodes are numbered from 1 to $\mathbf{n}$. Each node has a color, white or black. All the nodes are black initially. We will ask you to perform some instructions of the following form:

- $\mathbf{O} \mathbf{u}$ : ask for how many nodes are connected to $\mathbf{u}$, two nodes are connected if all the node on the path from $\mathbf{u}$ to $\mathbf{v}$ (inclusive $\mathbf{u}$ and $\mathbf{v}$ ) have the same color.
- $\mathbf{1} \mathbf{u}$ : toggle the color of $\mathbf{u}$ (that is, from black to white, or from white to black).


## Input

The first line contains a number $\mathbf{n}$ that denotes the number of nodes in the tree ( $1 \leq \mathbf{n} \leq 10^{5}$ ). In each of the following $\mathbf{n - 1}$ lines, there will be two numbers $(\mathbf{u}, \mathbf{v})$ that describes an edge of the tree ( $1 \leq \mathbf{u}, \mathbf{v} \leq \mathbf{n}$ ). The next line contains a number $\mathbf{m}$ denoting number of operations we are going to process $\left(1 \leq \mathbf{m} \leq 10^{5}\right)$. Each of the following $\mathbf{m}$ lines describe an operation $(\mathbf{t}, \mathbf{u})$ as we mentioned above $(0 \leq \mathbf{t} \leq 1,1 \leq \mathbf{u} \leq \mathbf{n})$.

## Output

For each query operation, output the corresponding result.

## Example

## Input 1:

5
12
13
14
15
3
01
11
01
Output 1:
5
1

## Input 2:

7
12
13
24
25
36
37
4
01
11
02
03

## Output 2:

7
3
3

Warning: large input/output data,be careful with certain languages

