One piece

One of DB and TN common interests is traveling. One day, they went to Grand Line and found One Piece!

The One Piece treasure has n gold coins (n is even). Both them like gold coins, but they evaluate them as different values. So they decided to divide those coins by following method :

DB and TN do n/2 steps, at each step, DB choose 2 coins, TN takes the coin that she evaluates it greater, and DB take the rest coin.

Let's help DB find how to take the maximum value at possible.

Input

First line : a single integer n (n is even) - the number of coins
Second line : n integers $a_{1}, a_{2}, \ldots, a_{n} a_{i}$ is the value of $\mathrm{i}^{\text {th }}$ coin that $T N$ evaluates.
Third line : n integers $b_{1}, b_{2}, \ldots, b_{n}$. b_{i} is the value of $i^{\text {th }}$ coin that $D B$ evaluates.

Output

First line : an integer S - the maximum value DB can take.
Last $\mathrm{n} / 2$ lines : $\mathrm{i}^{\text {th }}$ line contains two number x and $\mathrm{y}(1 \leq \mathrm{x}, \mathrm{y} \leq \mathrm{n})$, are the indexes of two coins that DB choose on $\mathrm{i}^{\text {th }}$ step. Each coin must be chose exact one time.

If there are multiple ways, just print any of them.

Constraints

$2 \leq n \leq 500000$
$1 \leq a_{i} \leq 10^{9}$
$1 \leq b_{i} \leq 10^{9}$
Note that $a_{1}, a_{2}, \ldots, a_{n}$ are n distinct integers.

Example

Input:
6
6101118514
17612151

Output:

28

Warning: large Input/Output data, be careful with certain languages

