Counting Pythagorean Triples

We define a Pythagorean triple as a set of three positive integers $\$ \mathrm{a} \$$, $\$ \mathrm{~b} \$$ and $\$ \mathrm{c} \$$ which satisfy $\$ a^{\wedge} 2+b^{\wedge} 2=c^{\wedge} 2 \$$.

Let $\$ \mathrm{P}(\mathrm{N}) \$$ denote the number of Pythagorean triples whose hypotenuses $(\$=c \$)$ are less than or equal to $\$ \mathrm{~N} \$$ (i.e. $\$ \mathrm{lle} \mathrm{N} \$$).

Your task is to find $\$ \mathrm{P}(\mathrm{N}) \$$.

Input

The first line of input contains a positive integer \$N\$.

Output

Print on a single line the value of $\$ P(N) \$$.

Constraints

\$1 Ve N Ve 1234567891011\$

Example

Input1:
5

Output1:
1
Input2:
15
Output2:
4
Input3:
10000
Output3:
12471
Input4:
1000000000000

Output4:

4179478903392

Explanation for Input2

There are four Pythagorean triples: $\$ \backslash\{3,4,5 \backslash\} \$, \$ \backslash\{5,12,13 \backslash\} \$, \$ \backslash\{6,8,10 \backslash\} \$, \$ \backslash\{9,12,15 \backslash\} \$$

Information

There are 15 test cases.
The sum of the time limits is 93 sec . (My solution runs in 14.03 sec .)

Cnurno I imitic 5 KR

Loading [Contrib]/a11y/accessibility-menu.js

