Psycho34 (easy)

In the prime factorization of a number \boldsymbol{N}, there's two kinds of powers. Even powers, in red, are psychotic ones, and odd powers, in blue, are ordinary ones.
We'll say \boldsymbol{N} a Psycho number if the count of even powers is strictly greater than the count of odd powers, else an Ordinary number.
For example, if $\boldsymbol{N}=\mathbf{6 7 5 0 0}$ with prime factorization $67500=2^{2} \times 3^{3} \times 5^{4}$.
This number have 2 even powers and 1 odd power. Since $2>1$, so the number 67500 is a Psycho Number.

Input

The first line of input contains an integer \boldsymbol{T}, the number of test cases.
Each of the next \boldsymbol{T} lines contains one integer \boldsymbol{N}.

Output

For each test case, print if \boldsymbol{N} is Psycho or Ordinary number.

Example

Input:
2
3
4

Output:

Ordinary Number
Psycho Number

Constraints

$0<T<10^{\wedge} 4$
$1<\mathrm{N}<10^{\wedge} 14$
Time limit is $\times 2 \mathrm{my}$ top speed with Python3 language, it could be not easy with slow languages. $\mathrm{O}\left(\mathrm{N}^{\wedge} .5 / \log (\mathrm{N})\right)$ should give TLE even with fast languages. You are awaited to submit something between $\mathrm{O}\left(\mathrm{N}^{\wedge} 0.33 / \log (\mathrm{N})\right)$ and $\mathrm{O}\left(\mathrm{N}^{\wedge} 0.25 / \log (\mathrm{N})\right)$. You can try before the quite similar "tutorial" problem : Psycho before.
@speed addicts : my top C timing is 0.04 s .

