Primitive Root

In the field of Cryptography, prime numbers play an important role. We are interested in a scheme called "Diffie-Hellman" key exchange which allows two communicating parties to exchange a secret key. This method requires a prime number \mathbf{p} and \mathbf{r} which is a primitive root of p to be publicly known. For a prime number p, r is a primitive root if and only if it's exponents $r, r^{2}, r^{3} \ldots r^{p-}$ ${ }^{1}$ are distinct $(\bmod p)$.

Cryptography Experts Group (CEG) is trying to develop such a system. They want to have a list of prime numbers and their primitive roots. You are going to write a program to help them. Given a prime number p and another integer $r<p$, you need to tell whether r is a primitive root of p.

Input

There will be multiple test cases. Each test case starts with two integers $\mathbf{p}\left(\mathbf{p}<2^{31}\right)$ and $\mathbf{n}(1 \leq n \leq$ 100) separated by a space on a single line. p is the prime number we want to use and n is the number of candidates we need to check. Then n lines follow each containing a single integer to check. An empty line follows each test case and the end of test cases is indicated by $p=0$ and $\mathrm{n}=0$ and it should not be processed. The number of test cases is at most 60.

Output

For each test case print "YES" (quotes for clarity) if r is a primitive root of p and "NO" (again quotes for clarity) otherwise.

Example

Input:
52
3
4

72
3
4
00
Output:
YES
NO
YES
NO

Explanation

In the first test case $3^{1}, 3^{2}, 3^{3}$ and 3^{4} are respectively $3,4,2$ and $1(\bmod 5)$. So, 3 is a primitive root of 5 .
$4^{1}, 4^{2}, 4^{3}$ and 4^{4} are respectively $4,1,4$ and 1 respectively. So, 4 is not a primitive root of 5 .

