## Probablistic OR

Everyone knows OR operation. Let us define new operation which we will call Probabilistic OR. We will denote this operation as \#. For given real number $p(0<=p<=1)$ and two bits $a$ and $b$ :

- if $a=1$ and $b=1$, then $\#(a, b)=1$;
- if $a=0$ and $b=0$, then $\#(a, b)=0$;
- else $\#(a, b)=0$ with probability $p, \#(a, b)=1$ with probability $1-p$.

Now for two given non-negative integers $x$ and $y$ we can define bitwise Probabilistic OR operation. The result of this operation is a number received by performing \# operation for each pair of bits of x and y in same positions. For example, for $\mathrm{p}=0.5, \mathrm{x}=2$, and $\mathrm{y}=4$, we will get 0,2 , 4 or 6 each with probability 0.25 . You will be given a list of non-negative integers. You have to implement a program which will calculate the expected value of the result of performing bitwise probabilistic OR operation on all these numbers given some $p$. The numbers will be taken from left to right.

## Input

Input file starts with real number p ( $0<=\mathrm{p}<=1$ ) with exactly two digits after the decimal point. Integer n follows ( $1<=\mathrm{n}<=100$ ). Next line contains n numbers ai in the order they are taking pert in the operation ( $0<=\mathrm{ai}<=10^{9}$ ).

## Output

Output the expected value of performing Probabilistic OR operation on the given numbers for given $p$. Print the result with two digits after the decimal point.

## Example

Input:
0.254

1234

## Output:

5.11

