Expected Time to Love

Alice has a problem. She loves Bob but is unable to face up to him. So she decides to send a letter to Bob expressing her feelings. She wants to send it from her computer to Bob's computer through the internet.

The internet consists of $\$ \mathrm{~N} \$$ computers, numbered from $\$ 1 \$$ to $\$ \mathrm{~N} \$$. Alice's computer has the number $\$ 1 \$$ and Bob's computer has the number $\$ N \$$.

Due to some faulty coding, the computers start behaving in unexpected ways. On recieving the file, computer $\$ \mathrm{i} \$$ will forward it to computer $\$ j \$$ with probability $\$ P _\{i j\} \$$. The time taken to transfer the file from computer $\$ \mathrm{i} \$$ to computer $\$ \mathrm{j} \$$ is $\$ T _\{i j\}$.

Find the expected time before Bob finds out about Alice's undying love for him.
Note: Once the letter is recieved by Bob's computer, his computer will just deliver it to Bob and stop forwarding it.

Input

First line contains \$T\$, the total test cases.
Each test case looks as follows:
First line contains \$N , the total number of computers in the network.
The next $\$ \mathrm{~N} \$$ lines contain $\$ \mathrm{~N} \$$ numbers each. The $\$ \$ \$$ 'th number on the $\$ i \$$ 'th line is the value \$P_\{ij\}\$ in percents.

The next $\$ \mathrm{~N} \$$ lines contain $\$ \mathrm{~N} \$$ numbers each. The $\$ j \$$ 'th number on the $\$ \mathrm{i} \$$ 'th line is the value \$T_\{ij\}\$.

Output

Output a single line with a real number - The expected time of the transfer.
Your output will be considered correct if each number has an absolute or relative error less than \$10^\{-6\}\$.

Constraints

\$N Ve 100\$
\$T Ve 5\$
For all \$i\$, \$P_\{i1\}+P_\{i2\}+Vdots+P_\{iN\}=100\$1020
$\$ P _\{N N\}=100 \$$
For all $\$ \mathrm{i} \$, \$ \mathrm{j} \$, \$ 0$ Ve T_\{ij\} Ve $10000 \$$

You can safely assume that from every computer, the probability of eventually reaching Bob's computer is greater than \$0\$.

Example

Sample Input:

2
4
050500
000100
000100
000100
02100
0000
0000
0000
2
991
0100
102
00
Sample Output:
6.000000
992.000000

