Personal LCM

We have an integer sequence of length $\mathrm{N}: \mathrm{A}_{0}, \mathrm{~A}_{1}, \cdots, \mathrm{~A}_{\mathrm{N}}-1$.

Find the following sum (Icm (a, b) denotes the least common multiple of a and $b)$:

- $\sum_{\mathrm{i}=0}^{\mathrm{N}-2} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{N}-1} \operatorname{lcm}(\mathrm{Ai}, \mathrm{Aj})$

Since the answer may be enormous, compute it modulo 998244353.

Constraints

- $1 \leq \mathrm{N} \leq 2$ * 10^{5}
- $1 \leq \mathrm{A}_{\mathrm{i}} \leq 10^{6}$
- All values in input are integers.

Input:

First line of input will be consist of a single N , number of elements.

In next line you will get N space seperated Integers. $A_{0} A_{1} A_{2} A_{3} A_{4} \ldots . . A_{N-1}$

Output:

Print the sum modulo 998244353.

Example:

Input:

3

246

Output:

22

Explaination:
$\operatorname{lcm}(2,4)+\operatorname{lcm}(2,6)+\operatorname{Icm}(4,6)=4+6+12=22$.

